On Clustering on Graphs with Multiple Edge Types
نویسندگان
چکیده
منابع مشابه
On Clustering on Graphs with Multiple Edge Types
We study clustering on graphs with multiple edge types. Our main motivation is that similarities between objects can be measured in many different metrics. For instance similarity between two papers can be based on common authors, where they are published, keyword similarity, citations, etc. As such, graphs with multiple edges is a more accurate model to describe similarities between objects. E...
متن کاملLatent Clustering on Graphs with Multiple Edge Types
We study clustering on graphs with multiple edge types. Our main motivation is that similarities between objects can be measured in many different metrics, and so allowing graphs with multivariate edges significantly increases modeling power. In this context the clustering problem becomes more challenging. Each edge/metric provides only partial information about the data; recovering full inform...
متن کاملComputing an Aggregate Edge-Weight Function for Clustering Graphs with Multiple Edge Types
We investigate the community detection problem on graphs in the existence of multiple edge types. Our main motivation is that similarity between objects can be defined by many different metrics and aggregation of these metrics into a single one poses several important challenges, such as recovering this aggregation function from ground-truth, investigating the space of different clusterings, et...
متن کاملClustering on k-Edge-Colored Graphs
We study the Max k-colored clustering problem, where, given an edge-colored graph with k colors, we seek to color the vertices of the graph so as to find a clustering of the vertices maximizing the number (or the weight) of matched edges, i.e. the edges having the same color as their extremities. We show that the cardinality problem is NP-hard even for edge-colored bipartite graphs with a chrom...
متن کاملOn (Semi-) Edge-primality of Graphs
Let $G= (V,E)$ be a $(p,q)$-graph. A bijection $f: Eto{1,2,3,ldots,q }$ is called an edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ where $f^+(u) = sum_{uwin E} f(uw)$. Moreover, a bijection $f: Eto{1,2,3,ldots,q }$ is called a semi-edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ or $f^+(u)=f^+(v)$. A graph that admits an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Internet Mathematics
سال: 2013
ISSN: 1542-7951,1944-9488
DOI: 10.1080/15427951.2012.678191